A GENERALIZATION OF STIMULUS SAMPLING THEORY
 by
 Richard C. Atkinson

TECHNICAL REPORT NO。 29

June 14, 1960

PREPARED UNDER CONTRACT Nonr 225(17)
 (NR 171-034)
 FOR
 OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

INSSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES Applied Mathematics and Statistics Laboratories

STANFORD UNIVERSITY
Stanford, California
by
Richard C. Atkinson */

The phrase "Stimulus Sampling Theory" is used to describe various formulations of the basic theory first set forth by Estes [1950] and Estes and Burke [1953]. In this paper we shall restrict our attention to a particular set of axioms for Stimulus Sampling Theory; namely, the axioms given by Suppes and Atkinson [1960; Chapter 1]. The exact way in which these axioms deviate from the original Estes version is discussed by Suppes and Atkinson and will not be re-examined here; however, it should be emphasized that there is no deviation in basic ideas.

The purpose of this paper is to introduce what we consider to be a natural generalization of the axioms. The change leads to a set of axioms which, for special cases, is equivalent to the axioms in Suppes and Atkinson. The reason for introducing this modification is to provide a context in which such experimental variables as reward magnitude and motivation can be viewed as determiners of behavior. Further, some experimental results on multiple response problems have a natural interpretation in terms of the ideas presented in this paper.

We begin by stating the axioms for the two-response case since it is the simplest; the generalization to multiple responses will be examined later. As customary, the responses are denoted A_{1} and A_{2}, and three reinforcing events E_{0}, E_{I} and E_{2} are specified.

The first group of axioms deals with the conditioning of stimuli, the second group with the sampling of stimuli, and the third with responses.

Conditioning Axioms

Cl. Associated with each stimulus element i is a positive integer $s_{i}{ }^{\circ}$

C2. At the start of trial n stimulus element i is in conditioning state $K_{j, n}$ where $j=0,1,2, \ldots, s_{i}$.

C3. If stimulus element i is sampled on trial n and is in conditioning state $K_{j, n}$, then with probability $1-\theta$ the reinforcing event is not effective and no change occurs in the conditioning state. When the reinforcing event is effective (i. e. with probability θ) then the conditioning state
(a) changes to K_{j+1} if E_{1} occurs (however, if in $K_{S_{i}, n}$ then no change occurs),
(b) changes to K_{j-1} if E_{2} occurs (however, if in $K_{0, n}$ then no change occurs),
(c) remains unchanged if E_{0} occurs.

C4. Stimulus elements which are not sampled on a trial do not change their conditioning state on that trial.

C5. The probability θ is independent of the trial number and the preceding pattern of events.

Sampling Axioms

Sl. Exactly one stimulus element is sampled on each trial.

S2. Given the set of elements available for sampling on a trial, the probability of sampling a particular element is independent of the trial number and the preceding pattern of events.

Response Axiom

Rl. If stimulus element i is in conditioning state $K_{j, n}$ and the element is sampled, then the probability of an A_{1} response is j / s_{i}.

These axioms are formally identical to those given by Suppes and Atkinson [1960] when $s_{i}=1$ for all elements. For this case methods of estimating the number of elements (N) and the conditioning parameter θ have been worked out and many applications to empirical data are available.

When $s_{i}>1$ for some elements, then interesting and rather surprising predictions occur. We now proceed to examine this case. In much of the discussion we shall restrict ourselves to the one-element model ($N=1$). There are no mathematical problems in extending the analysis to the multi-element case but notation becomes extremely complex. Further, a consideration of the one-element case is adequate for illustrating the basic ideas.

Noncontingent reinforcement. We begin with the simple noncontingent situation where E_{0} 's are not permitted and the probability of events E_{1} and E_{2} are constant over trials; i.e., $P\left(E_{1, n}\right)=\pi \geq \frac{1}{2}$ 。 We may prove from our axioms that the sequence of random variables which take the conditioning states as values is a Markov chain. This means, among other things, that a transition matrix $P=\left[p_{i j}\right]$ may be constructed where $p_{i j}=P\left(K_{j, n+1} \mid K_{i, n}\right)$. The learning process is completely characterized by these transition probabilities and the initial probability distribution on the conditioning states.

By Axiom C3, it is obvious that

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{s}, \mathrm{~s}}=1-\theta+\theta \pi \\
& \mathrm{p}_{\mathrm{s}, \mathrm{~s}-1}=\theta(1-\pi)
\end{aligned}
$$

(1)

$$
\mathrm{p}_{i, i+1}=\theta \pi
$$

$$
p_{i, i}=1-\theta
$$

$i \neq 0, \mathrm{~s}$

$$
\mathrm{p}_{1, \mathrm{i}-1}=\theta(1-\pi)
$$

$$
p_{0,1}=\theta \pi
$$

$$
p_{0,0}=1-\theta+\theta(1-\pi)
$$

Next define $p_{i j}^{(n)}$ as the probability of being in state j on trial $n+1$, given that on trial 1 we were in state i. Moreover, if the appropriate limit exists and is independent of io we set

$$
\begin{equation*}
u_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)} \tag{2}
\end{equation*}
$$

The Markov chain defined by (1) is irreducible and aperiodic; for such a finite-state chain it is well known that the limiting quantities u_{j} exist. For our particular case
(3)

$$
u_{j}=\left\{\begin{array}{cc}
\frac{a^{s-j}-a^{s-j+1}}{1-a^{s+1}} & \text { for } \\
\frac{1}{s+1} & \text { for } \\
\frac{1}{s+1} &
\end{array}\right.
$$

where $a=\frac{1-\pi}{\pi}$.
By the Response Axiom Rl we have that the asymptotic probability of an A_{1} response in the noncontingent situation is

$$
\lim _{n \rightarrow \infty} P\left(A_{1, n}\right)=P\left(A_{1}\right)=\sum_{j=0}^{s} \frac{j}{s} u_{j}
$$

$$
\begin{array}{ll}
=\frac{s(1-a)-a\left(1-a^{s}\right)}{s(1-a)\left(1-a^{s+1}\right)} & \text { for } \pi \neq \frac{1}{2} \tag{4}\\
=\frac{1}{2} & \text { for } \quad \pi=\frac{1}{2}
\end{array}
$$

For $\pi=\frac{1}{2}$ the prediction of $P\left(A_{1}\right)$ is $\frac{1}{2}$ for all values of s. However for $\pi \neq \frac{1}{2}$ the asymptotic prediction depends on s.

- 6 -

Figure 1. $P\left(A_{1}\right)$ as a function of π.

Figure 1 presents $P\left(A_{1}\right)$ as a function of π; the parameter on each curve is the value of s. For s equal to l we have $P\left(A_{1}\right)=\pi$; however as s increases, the prediction for $P\left(A_{l}\right)$ becomes increasingly greater than π_{0}. In fact by inspection of (4) it is obvious that
$\lim _{s \rightarrow \infty} P\left(A_{1}\right)=1$ for $\pi>\frac{1}{2} . * /$
Suppes and Atkinson [1960, Chapter 10] report data for a noncontingent experiment where $\dot{\pi}=.6$. The independent variable was the amount of money won or lost on each trial when the subject was correct $\left(A_{1, n} E_{1, n}\right.$ or. $\left.A_{2, n} E_{2, n}\right)$ or incorrect $\left(A_{2, n} E_{1, n}\right.$ or $\left.A_{1, n} E_{2, n}\right)$. For subjects in Group Z, no money was won or lost; for Group F five cents was won when the subject was correct and the same amount lost when incorrect; for Group T ten cents was won or lost. The obtained proportions of A_{1} responses at asymptote (trials 141-240) were . 593 (Group Z), 644 (Group F) and .690 (Group T). If we were to estimate s for the one-element model from this data alone we would find that s is approximately 1.0 for Group Z, 2.3 for Group F, and 3.3 for Group T.

* Comparable results can be obtained for other reinforcement schedules. For example, consider a contingent situation where E_{0} 's are not permitted and let $P\left(E_{1, n} \mid A_{1, n}\right)=\pi_{1}$ and $P\left(E_{1, n} \mid A_{2, n}\right)=\pi_{2}$. For this case if $\frac{\pi_{2}}{1-\pi_{1}+\pi_{2}}>\frac{1}{2}$, then $P\left(A_{1}\right)$ approaches I as s becomes large. For example, if $\pi_{1}=\frac{3}{4}$ and $\pi_{2}=\frac{1}{2}$, then $P\left(A_{1}\right)$ is $.67, .71, .75, .79, \ldots$ for $s=1,2,3,4, \ldots$.

For this experiment the estimated value of s increased as a function of the monetary payoff. In terms of the elementary process the amount of change in response probability on a given trial is dependent on the monetary payoff. For example, in the one-element model if $P\left(A_{1, n}\right)=0$, an E_{1} occurs, and conditioning is effective then $P\left(A_{1, n+1}\right)=\frac{1}{s}$. Thus, the isolated effect of a single reinforce. ment is a function of the payoff.*/ Of course, these ideas apply directly to experimental situations where different amounts of money can be won or lost from trial to trial; more detailed notions concerning the relations of θ and s to monetary value will depend on this type of investigation.

These results on the one-element model can be extended to the multi-element case and thereby permit $P\left(A_{1}\right)$ to take any value in the interval [$\pi, ~ 1)$. It should be noted that for $\mathbb{N}>1$ and any set of values for $s_{i}(i=1, \ldots, N$) we have a chain of infinite order in the sequence of response random variables; the same statement holds for $N=1$ and $s>1$. However, for the special case where $N=s=1$, the sequence of response random variables is a first-order Markov chain (see Suppes and Atkinson [1960] for a discussion of this point).

[^0]We shall not examine the multi-element problem but instead turn to some sequential results for the one-element noncontingent model. We present only a few to illustrate the method of proof and have selected those quantities which are useful in making pseudomaximumlikelihood estimates of θ and s. The reader is referred to Suppes and Atkinson [1960, Chapter 2] for a discussion of appropriate estimation proceaures.

Consider first $P\left(A_{1, n+1} \mid E_{1, n} A_{1, n}\right)$. By elementary probability considerations and Axiom RI we have that

$$
\begin{aligned}
& P\left(A_{1, n+1} E_{1, n} A_{1, n}\right) \\
& \quad=\sum_{i, j} P\left(A_{1, n+1} K_{j, n+1} E_{1, n} A_{1, n} K_{i, n}\right) \\
& \quad=\sum_{i, j} P\left(A_{1, n+1} \mid K_{j, n+1}\right) P\left(K_{j, n+1} \mid E_{1, n} A_{1, n} K_{i, n}\right) P\left(E_{1, n}\right) P\left(A_{l, n} \mid K_{i, n}\right) P\left(K_{i, n}\right)
\end{aligned}
$$

However, by Axiom C3 we have that

$$
\begin{aligned}
& P\left(A_{1, n+I} E_{1, n} A_{1, n}\right) \\
& \quad=\sum_{i=0}^{s-1}\left[\frac{i+1}{s} \theta+\frac{i}{s}(1-\theta)\right] \pi \frac{i}{s} P\left(K_{i, n}\right)+\pi P\left(K_{s, n}\right) \\
& \quad=\frac{\theta \pi}{s} \sum_{i=0}^{s-1} \frac{i}{s} P\left(K_{i, n}\right)+\pi \sum_{i=0}^{s-1} \frac{i^{2}}{s^{2}} P\left(K_{i, n}\right)+\pi P\left(K_{s, n}\right)
\end{aligned}
$$

Note, however, that $\lim _{n \rightarrow \infty} P\left(K_{i, n}\right)=u_{i}$ and by (3) we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} E_{1, n} A_{1, n}\right) & =\frac{\theta \pi}{s}\left[P\left(A_{1}\right)-u_{s}\right]+\pi\left[V_{2}-u_{s}\right]+\pi u_{s} \\
& =\frac{\theta \pi}{s}\left[P\left(A_{1}\right)-u_{s}\right]+\pi V_{2}
\end{aligned}
$$

where $V_{2}=\sum_{i=0}^{s}\left(\frac{i}{s}\right)^{2} u_{i}$ and can be easily calculated. Thus

$$
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid E_{1, n} A_{1, n}\right)=\frac{1}{P\left(A_{1}\right)}\left\{\frac{\theta}{s}\left[P\left(A_{1}\right)-u_{s}\right]+V_{2}\right\}
$$

Other asymptotic predictions useful for estimating parameters may be obtained by similar arguments and are given below:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid E_{2, n} A_{2, n}\right) & =\frac{1}{P\left(A_{2}\right)}\left\{P\left(A_{1}\right)-V_{2}+\frac{\theta}{s}\left[u_{0}-P\left(A_{2}\right)\right]\right\} \\
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid E_{2, n} A_{1, n}\right) & =\frac{V_{2}}{P\left(A_{1}\right)}-\frac{\theta}{s} \\
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid E_{1, n} A_{2, n}\right) & =\frac{1}{P\left(A_{2}\right)} \quad\left\{\frac{\theta}{s} P\left(A_{2}\right)+P\left(A_{1}\right)-V_{2}\right\} \\
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid E_{1, n}\right) & =P\left(A_{1}\right)+\frac{\theta}{s}\left(1-u_{s}\right) \\
\quad \lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid E_{2, n}\right) & =P\left(A_{1}\right)-\frac{\theta}{s}\left[1-u_{0}\right] \\
\lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid A_{1, n}\right) & =\frac{1}{P\left(A_{1}\right)}\left\{V_{2}-P\left(A_{1}\right) \frac{\theta(1-2 \pi)}{s}-\frac{u_{s} \theta \pi}{s}\right\} \\
\quad \lim _{n \rightarrow \infty} P\left(A_{1, n+1} \mid A_{2, n}\right) & =\frac{1}{P\left(A_{2}\right)}\left\{P\left(A_{1}\right)-V_{2}+\frac{u_{0} \theta(1-\pi)}{s}-\frac{\theta(1-2 \pi)}{s} P\left(A_{2}\right)\right\}
\end{aligned}
$$

Mean learning curves. Expressions for mean learning curves generally can be obtained but the computations are of'ten quite tedious. Consequently we shall not examine this topic in detail except to present results for the one-element noncontingent model when $\pi=1$ and $P\left(K_{i, I}\right)=\frac{1}{s+1}$ for $i=0,1, \ldots, s$. */

For $s=1$, the transition matrix $P=\left[p_{i j}\right]$ is

and P^{n} is

Further, define $u_{j}^{(n)}$ as the probability of being in conditioning state j at the start of trial n (given a uniform distribution on trial 1). Then

$$
u_{1}^{(n)}=u_{1}^{(1)}+u_{0}^{(1)}\left[1-(1-\theta)^{n-1}\right]
$$

*) Gordon Bower has derived many results for the case where $s=2$ and $P\left(K_{1,1}\right)=1$ and is applying the model to paired-associate learning data (see forthcoming technical report).

But by Axiom RI

$$
P\left(A_{1, n}\right)=u_{1}^{(n)}=1-\frac{1}{2}(1-\theta)^{n-1}
$$

Next consider the case where there are three conditioning states; i.e., Where $s=2$. The transition matrix is
2
$\left.1 \begin{array}{cccc}2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1-\theta & 0 \\ 0 & \theta & 1-\theta\end{array}\right]$.
and P^{n} is

	2	1	0
1			
0	1	0	0
$1-(1-\theta)^{n}$	$(1-\theta)^{n}$	0	
$1-(1-\theta)^{n}-n \theta(1-\theta)^{n-1}$	$n \theta(1-\theta)^{n-1}$	$(1-\theta)^{n}$	

Then

$$
\begin{aligned}
& u_{2}^{(n)}=u_{2}^{(1)}+u_{1}^{(1)}\left[1-(1-\theta)^{n-1}\right]+u_{0}^{(1)}\left[1-(1-\theta)^{n-1}-(n-1) \theta(1-\theta)^{n-2}\right] \\
& u_{1}^{(n)}=u_{1}^{(1)}(1-\theta)^{n-1}+u_{0}^{(1)}(n-1) \theta(1-\theta)^{n-2}
\end{aligned}
$$

And by Axiom RI

$$
P\left(A_{1, n}\right)=u_{2}^{(n)}+\frac{1}{2} u_{1}^{(n)}=1-\frac{1}{2}(1-\theta)^{n-1}-\frac{1}{6}(n-1) \theta(1-\theta)^{n-2}
$$

for $n \geq 3$. $P\left(A_{1,2}\right)=\frac{1}{2}+\frac{1}{3} \theta$ and of course $P\left(A_{1,1}\right)=\frac{1}{2}$. For $s=3$, the transition matrix is

3
2
1
0
:---:
1
0
0
0

and P^{n} is

	3	2	1	0
3	1	0	0	0
2	$1-(1-\theta)^{n}$	$(1-\theta)^{n}$	0	0
1	$1-(1-\theta)^{n}-n \theta(1-\theta)^{n-1}$	$n \theta(1-\theta)^{n-1}$	$(1-\theta)^{n}$	0
0	$\begin{aligned} 1-(1-\theta)^{n} & -n \theta(1-\theta)^{n-1} \\ & -\binom{n}{2} \theta^{2}(1-\theta)^{n-2} \end{aligned}$	$\left(\frac{n}{2}\right) \theta^{2}(I-\theta)^{n-2}$	$n \theta(1-\theta)^{n-1}$	$(1-\theta)^{n}$

Then

$$
\begin{aligned}
u_{3}^{(n)}= & u_{3}^{(1)}+u_{2}^{(1)}\left[1-(1-\theta)^{n-1}\right]+u_{1}^{(1)}\left[1-(1-\theta)^{n-1}-(n-1) \theta(1-\theta)^{n-2}\right] \\
& +u_{0}^{(1)}\left[1-(1-\theta)^{n-1}-(n-1) \theta(1-\theta)^{n-2}-\binom{n-1}{2} \theta^{2}(1-\theta)^{n-3}\right]
\end{aligned}
$$

$u_{2}^{(n)}=u_{2}^{(1)}(1-\theta)^{n-1}+u_{1}^{(1)}(n-1) \theta(1-\theta)^{n-2}+u_{0}^{(1)}\binom{n-1}{2} \theta^{2}(1-\theta)^{n-3}$
$u_{1}^{(n)}=u_{1}^{(1)}(1-\theta)^{n-1}+u_{0}^{(1)}(n-1) \theta(1-\theta)^{n-2}$

And by Axiom Rl

$$
\begin{aligned}
P\left(A_{1, n}\right) & =u_{3}^{(n)}+\frac{2}{3} u_{2}^{(n)}+\frac{1}{3} u_{1}^{(n)} \\
& =1-\frac{1}{2}(1-\theta)^{n-1}-\frac{1}{4}(n-1) \cdot \theta(1-\theta)^{n-2}-\frac{1}{12}\binom{n-1}{2} \theta^{2}(1-\theta)^{n-3}
\end{aligned}
$$

for $n \geq 4 . \quad P\left(A_{1, n}\right)=\frac{1}{2}, \quad P\left(A_{2, n}\right)=\frac{1}{2}+\frac{1}{4} \theta$, and $P\left(A_{3, n}\right)=\frac{5}{12}+\frac{1}{2} \theta+\frac{1}{12}(1-\theta)(1+\theta)$. We shall not pursue the general case, although it is obvious that

$$
P\left(A_{1, n}\right)=1-c_{1}(1-\theta)^{n-1}-c_{2}(n-1) \theta(1-\theta)^{n-2}-\cdots-c_{s}\left(\frac{n-1}{s-1}\right) \theta^{s-1}(1-\theta)^{n m s}
$$

where $0<c_{j} \leq \frac{1}{2}$.
Thus, the value of s affects not only the rate of learning but also the form of the learning curve. With $s=1$ we have the standard exponential growth function, but as s becomes large the form of the curve becomes \int-shaped.

Multiple Responses. We now examine the case where there are r responses $\left(A_{1}, \ldots, A_{r}\right)$ and $r+1$ reinforcing events $\left(E_{0}, E_{1}, \ldots, E_{r^{\prime}}\right)$ 。 For the multiple response case it is necessary to restate axioms C2, C3 and RI more generally.

C2'. At the start of trial n stimulus element i is in conditioning state $<k_{1, n} k_{2, n} \cdots k_{r_{, n}}>$ where $k_{j, n}=0, l, \ldots, s_{i}$ and $k_{1, n}+k_{2, n}+\cdots+k_{r, n}=s_{i}$.

C3'. If stimulus element i is sampled on trial n and is in conditioning State $<k_{1, n} \cdots k_{r, n}>$, then with probability $1-\theta$ the reinforcing event is not effective and no change occurs in the conditioning state. When the reinforcing event is effective (i.e. with probability θ)
(a) if $\mathrm{E}_{\ell, \mathrm{n}}(\ell \neq 0)$ occurs, then $\mathrm{k}_{\ell, \mathrm{n}+1}=\mathrm{k}_{\ell, \mathrm{n}}+1$ and one and only one of the other k 's takes a decrement of 1. The probability (for $j \neq \ell$) that $k_{j, n+1}=k_{j, n}=1$ is $k_{j, n} /\left(s_{i}-k_{\ell, n}\right)$
(b) if $\mathrm{E}_{\mathrm{O}, \mathrm{n}}$ occurs, then the conditioning state remains unchanged.

RI'。 If stimulus element i is in conditioning state $<k_{l_{g} n} \operatorname{li}_{n, n}>$ and the element is sampled, then the probability of response A is $k_{j, n} / s_{i}$.

For $r=2$ these axioms are equivalent to the axioms given at the outset of this paper. The only reason for introducing the earlier version was to make the presentation of the two-response case more accessible.

We now apply the axioms to a noncontingent reinforcement; procedure reported by Gardner [1957]. Three responses (A_{1}, A_{2}, A_{3}) are available to the subject and three reinforcing events (E_{1}, E_{2}, E_{3}) are employed. On each trial one of the reinforcing events occurs; i.e., $P\left(E_{i, n}\right)=\pi_{i}$ where $\pi_{1}+\pi_{2}+\pi_{3}=1$. Again, we consider only the one-element case, but there are no mathematical problems in extending this analysis to multiple elements; the only difficulty is that notation and computations can become very involved.

First consider the case where $s=1$. There are three conditioning states $<1.00>,<010>$ and $<001>$. These states form a Markov chain whose transition matrix can be obtained from Axiom C3' and is as follows:

	<100>	< O10>	$<001>$
$<100>$	$\underline{I m} \theta+\theta \pi{ }_{1}$	$\theta \pi_{2}$	$\theta \pi_{3}$
$<010\rangle$	$\theta \pi_{I}$	$1-\theta+\theta \pi_{2}$	$\theta \pi_{3}$
<001>	$\theta \pi_{1}$	Or_{2}	$\underline{l}-\theta+\theta \pi_{3}$

Define $u_{i j k}(i, j, k=1,0)$ analogous to (2). Then by Axiom $R 1^{\text {i }}$

$$
\lim _{n \rightarrow \infty} P\left(A_{1, n}\right)=P\left(A_{1}\right)=u_{100}=\pi_{1}
$$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} P\left(A_{2, n}\right)=P\left(A_{2}\right)=u_{010}=\pi_{2} \tag{5}\\
& \lim _{n \rightarrow \infty} P\left(A_{3, n}\right)=P\left(A_{3}\right)=u_{001}=\pi_{3}
\end{align*}
$$

For $s=2$, the conditioning states are $\langle 200\rangle,\langle 110\rangle$,
$<101\rangle,\langle 020\rangle,<011\rangle,<002\rangle$ and the transition matrix is as follows:

	<200>	<110>	<101>	< 020 >	<011 >	<002>
<200>	$1-\theta+\theta x_{1}$	${ }^{\theta} \pi_{2}$	$\theta \pi_{3}$			
<110 >	$\theta \pi_{1}$	1. $-\theta$	$\frac{1}{2} \theta \pi_{3}$	θ_{2}	$\frac{1}{2} \theta \pi_{3}$	
<101>	$\theta \pi_{1}$	$\frac{1}{2} \theta \pi_{2}$	$1-\theta$		$\frac{1}{2} \theta \pi_{2}$	$\theta \pi_{3}$
$<020\rangle$		$\theta \pi_{1}$		I- $-\theta+\theta \pi_{2}$	$\theta \pi_{3}$	
<OII>		$\frac{1}{2} \theta \pi_{1}$	$\frac{1}{2} \theta \pi_{1}$	$\theta \pi_{2}$	1.0	$\theta \pi_{3}$
<002 >			$\theta \pi_{1}$		$\theta \pi_{2}$	$1-\theta+\theta \pi_{3}$

It can be shown that

$$
\begin{array}{ll}
u_{200}=\pi_{1}^{2} / \mathrm{A} & u_{020}=\pi_{2}^{2} / \mathrm{A} \\
u_{110}=\pi_{1} \pi_{2} / \mathrm{A} & u_{011}=\pi_{2} \pi_{3} / \mathrm{A} \\
u_{101}=\pi_{1} \pi_{3} / \mathrm{A} & u_{002}=\pi_{3}^{2} / \mathrm{A}
\end{array}
$$

where $A=\pi_{1}^{2}+\pi_{2}^{2}+\pi_{3}^{2}+\pi_{1} \pi_{2}+\pi_{1} \pi_{3}+\pi_{2} \pi_{3}$.

By Axiom R. ${ }^{\prime}$
(6)

$$
\begin{aligned}
& P\left(A_{1}\right)=u_{200}+\frac{1}{2}\left[u_{110}+u_{101}\right]=\pi_{1}\left[\pi_{1}+\frac{1}{2}\left(1-\pi_{1}\right)\right] / \mathrm{A} \\
& P\left(A_{2}\right)=u_{020}+\frac{1}{2}\left[u_{110}+u_{011}\right]=\pi_{2}\left[\pi_{2}+\frac{1}{2}\left(1-\pi_{2}\right)\right] / \mathrm{A} \\
& P\left(A_{3}\right)=u_{002}+\frac{1}{2}\left[u_{101}+u_{011}\right]=\pi_{3}\left[\pi_{3}+\frac{1}{2}\left(1-\pi_{3}\right)\right] / \mathrm{A}
\end{aligned}
$$

For $s=3$ there are 10 conditioning states and the transition matrix is as follows:

$$
<300\rangle<210\rangle<201\rangle<120\rangle\langle 111\rangle<030\rangle\langle 021\rangle<102\rangle<012\rangle<003\rangle
$$

And by Axiom RI'

$$
\begin{align*}
& P\left(A_{1}\right)=u_{300}+\frac{2}{3}\left[u_{210}+u_{201}\right]+\frac{1}{3}\left[u_{120}+u_{110}+u_{102}\right] \\
& P\left(A_{2}\right)=u_{030}+\frac{2}{3}\left[u_{120}+u_{021}\right]+\frac{1}{3}\left[u_{210}+u_{111}+u_{012}\right] \tag{7}\\
& P\left(A_{3}\right)=u_{003}+\frac{2}{3}\left[u_{102}+u_{012}\right]+\frac{1}{3}\left[u_{201}+u_{111}+u_{021}\right]
\end{align*}
$$

The analysis may be extended to any value of s. For r responses the number of conditioning states will be $\binom{\mathrm{r}+\mathrm{S}^{-1}}{\mathrm{~s}}$. However, fox our examination of the Gardner data a comparison of predictions for s equal to 1,2 , and 3 will be sufficient.

Gardner actually reports severai experiments, but we shall consider oniy the data of Experiment I. Six groups were run. Two groups employed responses A_{1} and A_{2} and reinforcing events E_{1} and E_{2} 。 The groups were denoted (70 m 30) and (60 m 4) ; the first number indicates the value of π, and the second the value of inu. Asymptotic predictions for these groups are given by (4). The other groups involved three responses and were denoted ($70-15-15$) , ($70-20-10$), $(60-20-20)$ and ($60 \cdots 30-10$); the first number indicates the value of x_{1}, the second the value of π_{2}, and the third the value of π_{3}. Asymptotic predictions for these groups are given by (5) for s equal to I, by (6) for s equal to 2, and by (7) for s equal to 3 .

The predicted values for s equal to 1 and 2 are presented in Table 1 along with Gardner's observed proportions on trails 286-450.

TABLE 1
PREDICTED AND OBSERVED ASYMPTOTIC PROPORTIONS FOR THE GARDNER DATA

Group	$\mathrm{P}\left(\mathrm{A}_{1}\right)$			$\mathrm{P}\left(\mathrm{A}_{2}\right)$			$P\left(A_{3}\right)$		
	Obs.	Predicted		Obs:	Preaicted		Obs.	Predicted	
		$s=1$	$s=2$		$s=1$	$s=2$		$s=1$	$\mathrm{s}=2$
60-40	. 61.8	. 600	. 631	- 382	. 400	. 369	---	---	--*
60-30-10	. 684	. 600	. 658	. 235	- 300	. 267	. 081	. 100	. 075
60-20-20	.676	. 600	. 667	. 162	. 200	. 166	. 162	. 200	. 166
70-30	. 721	. 700	. 753	. 279	. 300	. 279	---	- --	---
70-20-10	. 798	. 700	. 773	. 129	. 200	. 156	. 073	. 100	. 071
70-15-1.	. 802	. 700	. 800	. 099	. 150	. 100	. 099	. 150	. 100

Over-all, the predictions for $s=2$ give a fairly good account of the data. However, for comparable experimental procedures and equipment, one would hope that the number of response alternatives would not affect the estimated value of s o Unfortunately this invariance, in s is not perfectly reflected in these data. For example, the predicted value of $P\left(A_{1}\right)$ for $s=2$ is slightly low for the two-response groups and
somewhat high for the three-response groups. Of course, this could be a statistical artifact, and a satisfactory answer would depend on a more detailed analysis of the sequential data.

There are several general comments to be made concerning these predictions. First of all, for s greater then 1 the predicted value of $P\left(A_{1}\right)$ in the $(70-30)$ group is less than the predicted value of $P\left(A_{1}\right)$ for groups $(70-15-15)$ and (70-20m10); similarly, the predicted value of $P\left(A_{1}\right)$ for the (60-40) group is less than $P\left(A_{1}\right)$ for groups (60-20-20) and (60-30-10). This result holds in general for the noncontingent reinforcement model: if the A_{1} response is reinforced With some specified probability greater than $\frac{1}{2}$, then for a fixed s greater than 1 , the prediction for $P\left(A_{1}\right)$ increases as a function of the number of aiternative responses. Further, $P\left(A_{I}\right)$ approaches 1 as s becomes large, independent of the number of alternative responses.

Another result can be established for the threemesponse noncontingent model. Let $\pi_{1}>\frac{1}{2}, \pi_{2} \geq \pi_{3}$, and define $\delta=\pi_{2}-\pi_{3}$. Then we can prove for fixed values of π_{1} and s (where $s>1$) that $P\left(A_{1}\right)$ increases as δ approaches 0 。

We shall not go further in our analysis of these axioms; our purpose in this paper has been simply to display the modified set of axioms and outline some of the grosser implications. Currently we are carrying out a detailed evaluation of the axioms with regard to several sets of data; future explorations of the ideas presented in this paper wi̊ll depend on the success of these analyses.

REF'ERENCES

Estes, W. K. Toward a statistical theory of learning. Psychological Review, 57 (1950), 94-107.

Estes, W. K., and Burke, C.J. A theory of stimulus variability in learning. Psychological Review, 60 (1953), 276-286.

Gardner, R. A. Probability-learning with two and three choices.

- American Journal of Psychology, 70 (1957), 174-185.

Suppes, Po, and Atkinson, R. C. Markov Learning Models for Multiperson Interactions. Stanford University Press, Stanford, 1960.

STANFORD UNIVERSITY TECHNICAL REPORT DISTRIBUTION LIST CONTRACT Nonr 225(17)

(NR 171-034)

Armed Services Technical
Information Agency
Arlington Hall Station
Arlington 12, Virginia
Commanding Officer
Office of Naval Research Branch Office
Navy No. 100 , Fleet Post Office New York, New York

Director, Naval Research Laboratory Attn: Technical Information Orficer Washington 25, D. C.

Director, USAF Project RAND
Via: AF Lialson Office
The RAND Corp. Library
1700 Main St.
Santa Monica, Calif.
Office of Naval Research
Group Fsychology Branch
Code 452
Department of the Navy
Washington 25, D. C.
Office of Naval Research
Branch Office
346 Broadway
New York 13, N. Y.
Office of Naval Research
Branch Office
1000 Geary St.
San Francisco 9, Calif.
Office of Naval Research
Branch Office
1030 Green St.
Pasadena 1, Calif.
Office of Naval Research Branch Office
The John Crerar Library Bldg.
86 E. Randolph St.
Chicago 1, IJl.
Office of Faval Research Logistics Branch, Code 436 Department of the Nav

Office of Naval Research
Mathematics Division, Code 430
Department of the Navy
Washington 25, D. C.
Operations Research Office
6935 Arlington Road
Bethesda 14, Md.
Attn: The Library
Office of Technical Services
Department of Commerce
Washington $25, \mathrm{D} . \mathrm{C}$.
The Logistics Research Project
The George Washington University
707-22nd St., N. W.
Washineton 7, D. C.
The RAND Corporation
1700 Main St.
Santa Monica, Calif.
Attn: Dr. John Kennedy
Library
Cowles Foundation for Research in Economics
Yale Station, Box 2125
New Haven, Conn,
Center for Philosophy of Science
University of Minnesota
Minneapolis 24, Minn.
Stanford Research Institute
Document Center
333 Ravenswood Ave.
Menlo Park, Calif.

Attn: WCLDPP, Mrs. Southern
Wright-Patterson AF Base, Ohio
Department of Mathematics
Michigan State University
East Lansing, Michigan
Professor Ernest Adams
Department of Philosophy
University of California
Berkeley 4, California
Professor Alan Ross Anderson Department of Philosophy
Yale University
New Haven, Conn.
Professor Norman H. Anderson
Department of Psychology
University of California
Los Angeles 24, Calif.
Professor T. W. Anderson
Department of Statistics
Columbia University

Dr. R. F. Rales
Department of Social Relations
Harvard University
Cambridge, Mass.
Professor Edward G. Begle
School Mathematics Stady Group
Yale University
Drawer 2502A
New Haven, Conn.

Department of Philosophy
State University of Iowa
Iowa City, Iowa
Professor Max Black
Department of Philosophy
Cornell University
Ithaca, New York
Professor David Blackwell
Department of Statistics
University of Calirornia
Berkeley 4, Calif.
Mr. Riehard S. Bogartz
Psychology Department
U.C.L.A.

Los Angeles 24, Calif.
Professor Lyle E. Bourne, Jr.
Department of Psychology
University of Uteh
Salt Lake City, Utah
Professor C. J. Burke
Professor C. J. Burke
Department of Psychology Indiana University
Bloomington, Indiana
Professor R. R. Bush
106 College Hall
University of PennsyIvania Philadelphia 4, Pa.

Dr. Donald Campbell
Department of PsychoLogy
Northwestern University
Evanston, Ill.
Mr. J. Merrill Carlsmith
Department of Social Relations
$1 . \quad$ Harvard University
Cambridge 38, Mass.
Professor Rudolf Carnap
1 Depsrtment of Philosophy
University of California
Los Angeles 24, Calif.

Professor Edward c. Carterette
Department of Psychology
1 University of Californda
Los Angeles 24, Calif.
Professor Nom Chomsky
1 Department of Philosophy
Massachusetts Institute of Technology
Cambridge, Massachusetts
1 Professor C. W. Churchman
School of Business Administration University of California Berkeley 4, Californis

1. Professor James Coleman

Department of Social Relations
Johns Hopkins University
Baltimore, Maryland
1 Dr. Clyde H. Coombs
Department of Psychology
University of Michigan
Ann Arbor, Michigan
1 Professor Gerard Debreu
Cowles Foundation for Research in Economics
Yale Station, Box 2125
New Haven, Connecticut
1 Dr. J. A. Deutsch
Center for Advanced Study in
the Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, California
Professor Robert Dorfman
Department of Economics
IFarvard University
Cambridge 38, Massachusetts
Professor Burton Dreben
Department of Philosophy
Enerson Hall
Harvard University
1 Cambridge 38, Massachusett.
Profescor P. H. Dubois
Department of Psychology
Washington University
1 St. Louis 5, Missouri
Dr. Ward Edwards
Department of Psychology
University of Michigan
Ann Arbor, Michigan
Professor W. K. Estes
Department of Psychology
Indiana University
Bloomington, Indiana
Professor Robert Fagot
Depertment of Psychology
Department of Psychology
University or Oregon
1 Elgene, Oregon
Professor Merrill M. Flood
231 West Engineering
University of Michigan
1 Ann Arbor, Michigan
Professor Raymond Frankmann
Department of Paychology
University of Illinois
1 Urbana, Illinois
1
Professor Milton Friedman
Department of Economics
Deparma of Economics
1 Chicago 37, Illinois
Dr. Eugene Galanter
Department of Psychology
University of Pennsylvania
1 Philadelphia 4, Pennsylvania
Professor Johan Geltung
Department of Sociology
Columbia University
New York 27, New York

-iii-							
Professor Nicholos Rashevsky		Professor Herbert Simon		Dr. John T. Wilson			
University of Chicago		Carnegie Institute of Technology		National Science Foundation			
Chicago 37, Illinois	1	Schenley Park		1520 H Street, N. W.			
		Pittsburgh, Pe.	1	Washington 25, D. C.	1		
Professor Philburn Ratoosh							
Department of Psychology		Professor J. L. Snell		Professor Kellogg Wilson			
Ohio State University		Department of Mathematics		Kent State University			
Columbus, Ohio	1	Dartmouth College		Kent, Ohio	1		
		Hanover, New Hampshire	1				
Professor Frank Restle				Professor J. Wolfowitz			
Department of Psychology		Professor K. W. Spence		Department of Mathematics			
Mchigan State University		Department of Psychology		Cornell University			
East Lansing, Michigan	1	State University of Iowa		Ithaca, N. Y.	1		
		Iowa City, Iowa	1				
Dr. Henry Riecken, Dixector Social Science Division		Professor 5. Smith Stevens		Professor Robert J. Wolfson Department of Economies			
National Science Foundation		Memorial Hall		Michigan State University			
Washington 25, D. C.	1	Harvard University.	1	East Lansing, Michigan	1		
Professor David Rosenblatt				Professor Davia Zeaman			
American University		Dr. Donald W. Stilson		Department of Psychology			
Washington 6, D. C.	1	Department of Psychology		The University of Connecticut			
		University of Colorado		Storrs, Conn.	1		
Dr. Robert E. Ross		Boulder, Colorado	1				
Electric Boat Division				Lt. Doneld L. Zink			
General Dymamics Corporation		Professor Marshall Stone		Engineering Psychology Branch			
Groton, Connecticut	1	Department of Mathematics		WCLDPPY			
		University of Chicago		Aerospace Medical Lab.			
Alan J. Rowe, Manager		Chicago 37, Ill.	1	Hq. Wright Air Dev. Center			
Business Management				Wright-Fatterson AF Base, Ohio	1		
Contral Systems Research		Dr. Dewey B. Stuit					
System Development Corporation		108 Schseffer Hall		Distribution via ONR London			
2500 Colorado Ave.		State University of Iowa					
Santa Monica, Californis	1	Iowa City, Iowa	1	Commanding oificer			
				Branch Office			
Professor Hexman Rubin		Professor John Swets		Navy iNo. 100			
Department of Statistics		Psychology Section		Fleet Post orfice			
Michigan State University		Dept. of Econ. and Socl. Sci.		New York, New York			
East Lansing, Michiggan	1	Mass. Institute of Technology Cambridge 39, Mass.	1	Professor Maurice Allais			
Professor Richard S. Rudner		Camridge 39, Mas.		15 Rue des Cates-Ceps			
Department of Philosophy		Professor Alfred Tarski		Saint-Cloud, (s.-0.)			
Michigan State University		Department of Mathematics		France	1		
East Lansing, Michigan	1	University of California					
		Berkeley 4, California	1	Dr. R. J. Audley			
Professor Paul Samuelson				Department of Psychology			
Department of Economics		Professor G. L. Thompson		University College			
Massachusetts Institute of Technology		Department of Mathematics		London WC 1, ENGLAND	1		
		Ohio Wesleyan					
Cambridge, Massachusetts	1	Delaware, Ohio	1	Professor E. W. Beth			
				Bern, Zweerskade 23, I			
Dr. I. Richard Savage		Dr. Robert L. Thorndike		Amsterdam Z.,			
School of Business		Teschers College		NETHERLANTS	1		
V incent Hall		Columbia University					
University of Minnesota Minneapolis, Minnesota		New York 27, N. Y.	1	Professor R. B. Braithwalte			
	1			Kings College			
		Professor R. M. Thrall		Cambridge, ENGIAND	1		
Professor L. J. Savage		University of Michican					
Department of Statistics		Engineering Research Institute		Dr. F. Bresson			
University of Chicago		Ann Arbor, Michigan	1	Laboratoire de Psychologie			
Chicego 37, Illinois				Experimentale et Comparee			
		Dr. E. Paul Torrance Bureau of Educational Research		Ecole Pratique des Hautes Etudes 46 Rue St. Jacques			
Dr. Dans Scott Eckart Hall		Bureau of Educational Research University of Minnesota		Paris (Ve.). Frince	1		
University of Chicago		Minneapolis 24, Minnesota	1				
Chicago 37, İl.	1			Dr. John Brown			
		Professor A. W. Tucker		Department of Psychology			
Dr. C. P. Seitz		Department of Mathematics		Birkbeck College			
Special Devices Center		Princeton University		Malet Street.			
Sands Point							
Fort Washington		Dr. Ledyard R. Tucker		Dr. Violet Cane			
Long Islend, N. Y.	1	Educational Testing Service		Newham College			
		20 Massau St.		Cambridge, ENGLAND	1		
Professor Marvin E. Shaw		Princeton, N. J.	1				
Departmegt of Psychology				Dr. H.C.J. Duijker			
University of Florida		Professor John W. Tukey		Psychologisch Laboratorium			
Gainesville, Florida	1	Fine Hall		Keiszereracht			
		Princeton, New Jersey	1	Amsterdam 613/C, NEPHERLANDS	1		
Mr. R. E. Shuey, Manager							
Research Laboratory		Professor John van Laer		Mr. Michael Dummett			
General Electric Company		Department of Psychology		All Souls' College			
P. O. Box 1088		Northwestern University		Oxford, ENGLAND	1		
Schenectady, N. Y.	I	Chicago, Ill.	1				
				Professor Jacques H. Dreze			
Professor Sidney Siegel		Professor Edward L. Walker		5 Avenue Princesse Lydia			
Department of Psychology		Department of Psychology		Heverle-Louvain, BELGIUM	1		
Pennsylvania State University		University of Michigan					
University Park, Ps.	1	Ann Arbor, Michigan	1				

Dr. Jean Engler
Department of Psychology
Univeraity of London
Gower St.
London, ENGLAND
Professor J. M. Faverge
Universite de Bruxelles
67, rue Franz Merjay
Brussels, BELGTUM
Dr. C. Flament
Laboratolre de Psychologie
Experimentale et Comparee
Ecole Pratique des Hautes Etudes
46 Rue St. Jacques
Paris (Ve), FRANCE
Professor Maurice Frechet
Institut H. Poincare
11 Rue P. Curie
Paris 5, FRANCE
Dr. I. J. Good
25 Scott House
Cheltenham, ENGLAND
Dr. T. T. ten Have
Sociaal - Paed. Instituut
Singel 453
Amsterdam, NETHERLANDS
Dr. W. E. Hick
Psychology Laboratory
Downing Place
Cambridge, FNGLAND
Institut fur Math. Logik
Universitat
Schlossplatz 2
Munster in Westfalen
GERMANY
Dr. A. R. Jonckheere
Department of Psychology
University College
University College
Iondon WC 1, ENGLAND
Mr. David Kendall
Magdalen College
Oxford, ENGLAND
Mr. E. J. Lemmon
Trinity College
Oxford, ENGLAND
Professor P. Lorenzen
Philosophisches Seminar
Der Universtat
Kiel, WEST GERMANY
Mr. Henri Rouanet
Centre d^{t} Etudes et Recherches
Psychotechniques
13, rue Paul-Chautard
Paris (XVe), FRANCE
Madame Madeleine Schlag-Rey
Institut de Sociologie Solvay
Pare Leopold
Brussels, BELGIOM
Dr. Saul Sternberg
St. John's Colleag
Cambridge, ENGLAND
Dr. N. S. Sutherland
Institute of Experimental Psychology
l South Parks Road
oxford, ENGLAND
Professor D. van Dentzig
Nathematical Centre
Statistical Department
ade Boerhaavestraat 49
Amsterdam, THE NETHERLANDS

1

Professor 0. L. Zangwill
Psychological Laboratory
Downing Place
Cambridge, ENGIAND
Other Forejen Addresses
Professor Y. Bar-Hillel
Department for History and Philosophy of Science
Hebrew University
Jerusalem, ISRAEL
L. Guttman

Israel Institate of Applied Social Research
David Hamlech No. 1
Jerusalem, ISRAEL
Dr. John Hersanyi
Department of Social Philosophy
Australian National University
GPO Box 4, Canberra, A.C.T.
AUSTRALIA
1
1 Dr . Georg Karlsson
Sociologiska Institutionen
Uppsale, SWEDEN
1
Dr. T. Markkanen
Toi ronkatu 1. B36
Helsinki, FINLAND
Professor Hukukane Nikaido
The Institute of Social and Economic Research
Osaka University
Toyoneka, osaka
JAPAN
1
Dr. J. Pranzagl
Institut Fur Statistik
Universitat Wien
Wien, AUSIRIA
Dr. Masanao Toda
Department of Experimentel Psychology
Froulty of Ietters
Hokkaido University
Sapporo, Hokkaido
JAPAN
1
Additional copies for project
lesders and assistants, office
file, and reserve for future
requirements

[^0]: */ An inspection of the entire set of data suggests that both θ and s increase as a function of monetary payoffs.

